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A NOTE ON THE MICHAELIS–MENTEN KINETICS FOR

ENZYMATIC PROCESSES IN SOLUTIONS

JENS STRUCKMEIER∗

Abstract. We derive analytical formulas in terms of elementary functions which should approx-
imate exact solutions of the Michaelis–Menten equations on different time scales. For short times
the approximation is based on an analytical solution of a Riccati differential equation with constant
coefficients. An approximation which is uniformly valid in time as long as the initial free enzyme is
much larger than the free substrate is obtained from a linearization around the unique equilibrium
point. Moreover we apply asymptotic expansion techniques which might give uniform approxima-
tions in time and relate the present work to the quasi–steady state approximations (QSSA) given in
the literature.

Key words. Michaelis–Menten kinetics, conservation relations, linearization, asymptotic ex-
pansions, quasi–steady state approximation

AMS subject classifications. 34A05, 41A60, 92C45

1. Introduction. In the present work we are concerned with the following non-
linear system of ordinary differential equations from mathematical biology given by:

dE

dt
= k−1 C − k1 ES + k2 C(1.1)

dS

dt
= k−1 C − k1 ES(1.2)

dC

dt
= k1 ES − k2 C − k−1 C(1.3)

dP

dt
= k2 C(1.4)

which describes the reaction mechanism for enzymatic processes in solution, already
formulated in 1913 by Michaelis and Menten and therefore referred as the Michaelis–
Menten scheme [3]. The reaction kinetics of the scheme reads

E + S ←→ C −→ E + P

where E and C denote the free and bound enzyme, respectively, S the free substrate
and P the products. We further denote by k1 the rate constant for the formation of
bound enzyme, by k−1 the corresponding backward reaction rate and finally by k2

the catalysis rate constant, i.e. the rate for the reaction C → E + P . Because k1,
k−1 and k2 are rate constants they are assumed to be strictly positive. The system is
typically closed by the initial conditions (E(0), S(0), C(0), P (0)) = (ET , ST , 0, 0).

System (1.1)–(1.4) is somehow the prototype model of biochemistry and even the
basic example for what is called the quasi–steady state approximation (QSSA), which
is an usual way to simplify models based on nonlinear ordinary differential equations
appearing in biology and other branches of science.

The aim of the QSSA is to derive analytical formulas as approximations for so-
lutions of nonlinear equations, which are not integrable in closed form. The method
is also applied to overcome stiffness problems in the numerical integration of the
equations.
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The standard QSSA (sQSSA) for equations (1.1)–(1.4), which are integrable in
closed form only for k2 = 0 (i.e. P = 0), is derived as follows [4]: using the conserva-
tion relation E + C = ET in (1.1)–(1.4) yields the equations

dS

dt
= k−1 C − k1 (ET − C)S(1.5)

dC

dt
= k1 ((ET − C)S −KM C)(1.6)

dP

dt
= k2 C(1.7)

with the standard notation

KM =
k−1 + k2

k1
(1.8)

Now one assumes that after a fast transient, the bound enzyme C reaches an equilib-
rium point, such that dC/dt ≈ 0. Then the problem reduces to the single nonlinear
differential equation

dS

dt
= −k2

ETS

KM + S
(1.9)

and this equation is solved using the same initial condition like for the full equations,
i.e. S(0) = ST . One should notice that equation (1.9) can be “integrated in closed
form”, but the solution is expressed in terms of the Lambert W function, defined as
the real valued solution of the equation

W (x)eW (x) = x

One can show that the sQSSA is valid providing that

ET ¿ ST +KM

see [4] and [5], but fails drastically outside the domain of validity. One reason is that
there may occur initial layers in the free substrate S and the bound enzyme C, where
the first one drops down significantly and the latter one reaches its maximal value.
Hence solving equation (1.9) together with S(0) = ST is certainly wrong.

Modifications (and improvements) of the sQSSA are the reversed QSAA (rQSSA)
[5] and the total QSSA [1],[6]. In the rQSSA one simplifies the equations assuming
dS/dt = 0 and in [5] it is shown that the rQSSA is valid for “large” values of ET .
The tQSSA reformulates the system in terms of the new variable S̄ = S − C and
proceeds afterward with the same technique like in the sQSSA. One should notice
that the tQSSA yields again a single differential equation, but the equation is not
integrable in closed form. Hence, Tzafriri [6] introduced a first order tQSSA, which is
defined as a single differential equation similar to (1.9). In [6] it is also shown, e.g, by
numerical experiments, that the (first order) tQSSA extends the domain of validity
of the standard and reverse QSSA.

In the following we derive analytical formulas in terms of elementary functions
which should approximate exact solutions of (1.1)–(1.4) on different time scales. An
analytical expression for the initial layer behavior based on a Riccati equation with
constant coefficients is formulated in Section 2.1. The formulas may even be used to
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derive a different initial condition for equation (1.6) of the sQSSA in order to improve
the domain of validity.

An approximation, which is uniformly valid in time providing ST ¿ ET , is ob-
tained in Section 2.2. Here we use a linearization around the unique equilibrium point
of the Michaelis–Menten equations. In Section 3 we discuss the quality of the simpli-
fied models using parameter values taken from Tzafriri [6]. An asymptotic treatment
of the model is done in Section 4 and in particular we show that the Riccati equation
from Section 2.1. comes out naturally when treating the equations as a singular per-
turbed problem solved by asymptotic matching techniques. Some conclusion on the
present work are given in Section 5.

2. Simplified models for the Michaelis–Menten kinetics. The conserva-
tion relations of (1.1)-(1.4), namely

E + C = ET

S + C + P = ST

suggest the following transformation of variables:

ET = E + C, ST = S + C + P, X = C, Y = P(2.1)

Substituting (2.1) into (1.1)–(1.4) yields the equations

Ẋ = k1(ET −X)(ST −X − Y )− (k2 + k−1)X(2.2)

Ẏ = k2X(2.3)

formulated in the unknowns X(t) and Y (t). Again the system is not integrable in
closed form except for the case k2 = 0.

In order to obtain analytical approximations to the system we will proceed as
follows:

1) assuming Y ≡ 0 on the right hand side of (2.2) yields a system, which can be
solved analytically. The corresponding equation for X(t) is a Riccati equation
with constant coefficients. This model may serve as an approximation of the
(fast) transient behavior of (1.1)–(1.4) when looking at small time scales.
Indeed we will show in Section 4, that the equation can be derived using an
asymptotic expansion technique.

2) a linearization around the unique, asymptotically stable equilibrium point
of (2.2), (2.3) yields a linear system, which is integrable in closed form and
should be uniformly valid in time providing ST ¿ ET .

2.1. Approximation for small times. Equations (2.2), (2.3) are typically
closed by the initial conditions X(0) = 0 and Y (0) = 0. Hence, for small times,
it makes sense to neglect the term Y on the right hand side of (2.2). The resulting
system then reads

Ẋ = k1(ET −X)(ST −X)− (k2 + k−1)X(2.4)

Ẏ = k2X(2.5)

and the main advantage is that the system can be solved analytically. Rewriting (2.4)
in a more compact way yields the Riccati–equation

Ẋ +AX +BX2 = C(2.6)
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with

A = k1(ET + St) + k−1 + k2, B = −k1, C = k1ETST

The exact solution of (2.6) with X(0) = 0 and ω =
√
A2 + 4CB reads

X(t) =
1

2B

[

−A+ ω
(ω +A)eωt − (ω −A)

(ω +A)eωt + (ω −A)

]

In the limit as t→∞ one has

X(t)→
ω −A

2B

which indicates that the approximation can only be valid for small times. Moreover, it
is easy to check that the approximation given above is strictly monotone increasing,
such that the maximum of X(t) is attained for t → ∞. One should notice that
equation (2.5) can be integrated analytically using the expression for X(t).

2.2. Linearization around the equilibrium point. Let us return to the sys-
tem (2.2), (2.3): the unique equilibrium point is given by Xe = 0 and Ye = ST and
the transformation x = X, y = Y − ST yields

ẋ = −k1(ET − x)x− (k−1 + k2)x− k1(ET − x)y(2.7)

ẏ = k2x(2.8)

such that a linearization around (Xe, Ye) reads

ẋ = −αx− βy(2.9)

ẏ = γx(2.10)

with

α = k1ET + k2 + k−1, β = k1ET , γ = k2

One should notice that equation (2.9) is independent of ST – the dependence is hidden
in the initial condition y(0) = Y (0) − ST . Moreover, the eigenvalues of the linear
system are

λ1/2 = −
α

2
±

1

2

(

α2 − 4βγ
)1/2

such that for all parameter values we get Re(λ1/2) < 0, which means that the equilib-
rium point (Xe, Ye) is asymptotically stable. Fig. 2.1 shows the two eigenvalues λ1/2

for various values of k−1 and k2 keeping k1ET = 10 fixed.
The linear system is solvable using standard techniques and one obtains with

initial conditions x(0) = 0 and y(0) = −ST the solution

x(t) =
βSt

δ

[

exp

(

−
α− δ

2
t

)

− exp

(

−
α+ δ

2
t

)]

y(t) =
St

2δ

[

(α− δ) exp

(

−
α+ δ

2
t

)

− (α+ δ) exp

(

−
α− δ

2
t

)]
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with δ =
√

α2 − 4βγ.
Using the exact formulas for x(t) and y(t), the free enzyme and substrate, E(t) and
S(t), respectively, are simple given by the formulas

E(t) = ET − x(t)

S(t) = −x(t)− y(t)

A sufficient condition for the validity of the linear model – only using the initial

0
200

400
600

800
1000

k_1

0

20

40

60

80
k2

–1000

–800

–600

–400

–200

0

0
200

400
600

800
1000 k_1

0

20

40

60

80
k2

–10

–8

–6

–4

–2

0

Fig. 2.1. Dependence of the eigenvalues λ1/2 of the linear system (2.9), (2.10) on k−1 and k2

keeping the term k1ET = 10 fixed.

conditions ET and ST – is given by ST ¿ ET , which may be motivated as follows:
using the relation S(t) = −(x(t) + y(t)) equation (2.7) reads

ẋ = −k1(ET + S)x− (k−1 + k2)x− k1ET y

and to obtain (2.9) one neglects the term −k1Sx. This is valid as long as

k1S ¿ α = k1ET + k2 + k−1

and from the estimate S(t) ≤ ST one arrives at the condition

ST ¿ ET

The validity of this condition is confirmed in the next section.
Because the rate constants are positive, a weaker condition – including the rate

constants – reads

ST ¿ ET +KM

with KM defined by (1.8).

3. Discussion of the simplified models. One simple contribution of the
present work is to give some new analytical formulas to approximate solutions of
the nonlinear Michaelis–Menten kinetics. In the following we give some comparisons
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Table 3.1

Parameters used for the following examples, taking from [6].

Test k1 k−1 k2 ET ST ST /ET

a) 1 1 1 10 1 1/10
b) 1 100 10 10 1 1/10
c) 1 90 10 100 100 1
d) 1 90 10 200 100 1/2

between the full equations and the approximations discussed in the previous section,
where the solutions of (2.2), (2.3) are computed using a standard numerical integration
routine of MAPLE.

The parameters used in the following are taken from reference [6] and summarized
in Table 3.1. The initial conditions for (1.1)–(1.4) and the reduced models of the
previous section are always (E(0), S(0), C(0), P (0)) = (ET , ST , 0, 0).

Fig. 3.1 and 3.2 show the initial behavior of the free substrate S and the bound
enzyme C, respectively, for the original system (1.1)–(1.4) (solid line) and the re-
duced model (2.4), (2.5) (boxes) of Section 2.1. according to the parameters given
in Table 3.1. Equations (2.4), (2.5) work markedly well in all four cases considered

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.05 0.1 0.15 0.2 0.25 0.3

t

0

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

t

Fig. 3.1. Bound enzyme C for case a) (left) and b) (right) of Table 3.1: numerical solution of
equations (2.2), (2.3) (solid line), analytical solution of the reduced model (2.4), (2.5) (boxes).

here as long as we restrict the reduced model to a small initial layer. The size of the
initial layer strongly depends on the value of ST : due to (2.4) the solution X(t) is
a strictly increasing function such that the same holds for Y (t). Hence, neglecting
the term Y (t) on the right hand side of (2.4) is valid for small values of Y (t) and
because limt→∞ Y (t) =∞ the reduced model has to break down for larger times. A
comparison between the exact solution and the linearized model for the parameters
of Table 3.1 is shown in Fig. 3.3–3.6. In the first two cases a) and b) the linearized
model works markedly well. There is only a small overshoot at the maximum of the
bound enzyme.

A strong deviation in all three curves is detected in case c): the maximal value of
the bound enzyme C is overestimated by about 28 %, whereas the free substrate S is
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Fig. 3.2. Bound enzyme C for case c) (left) and d) (right) of Table 3.1: numerical solution of
equations (2.2), (2.3) (solid line), analytical solution of the reduced model (2.4), (2.5) (boxes).
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Fig. 3.3. Free substrate S (left) and bound enzyme C (right) for test a) of Table 3.1: numerical
solution of equations (2.2), (2.3) (solid line), analytical solution of the linearized model (boxes).

underestimated over the whole time interval. The same effect is observed in case c)
although the differences between the exact solution and the linearized model are much
smaller compared to the previous case. Let us compare our linear model of Section 2.1
with the results given by Tzafriri in [6] on the QSSA methods: in case a) our linear
model seems to work better than the rQSSA and the (first order) tQSSA, because the
linear model captures the transient behavior of the free substrate S and the bound
enzyme C over the whole time interval [0, 3] including early and late phases. For case
b), where the rQSSA fails in the behavior of the free substrate S, the linear model
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Fig. 3.4. Free substrate S (left) and bound enzyme C (right) for test b) of Table 3.1: numerical
solution of equations (2.2), (2.3) (solid line), analytical solution of the linearized model (boxes).

works as good as the first order tQSSA.
In case c), where Fig. 3.5 shows the largest deviations from the exact solution, the
linear model works better than the rQSSA, but certainly cannot compete with the
tQSSA. The quality of the approximation is comparable with that of the first order
tQSSA. In the final case d) our linear model works significantly better than the rQSSA
and the first order tQSSA, but again cannot compete with the tQSSA. Together with
the ratio ST /ET of Table 3.1 the results confirm that the relation ST /ET ¿ 1 derived
in the previous section is a sufficient condition for the validity of the linear model (2.9),
(2.10).

4. Asymptotic treatment of the Michaelis–Menten kinetics. Fig. 3.3–
3.6 show that the dynamic behavior of the free substrate S and the bound enzyme C
contain small initial layers, wherein the free substrate drops down significantly and
the bound enzyme reaches its maximal value. In the following we will show that
the behavior in these layers can be described (up to higher order corrections) by the
Riccati equation formulated in 2.1.
Introducing the scaling x̄ = x/ST and ȳ = y/ST in equations (2.9), (2.10) yields
(omitting the bars)

ẋ = −k1

(

ET

ST
− x

)

STx− (k−1 + k2)x− k1

(

ET

ST
− x

)

ST y

ẏ = k2x

With the parameters of case c) of Table 3.1, i.e. ET = ST = k−1 + k2 = 100, k1 = 1
and k2 = 10, one may rewrite these equations in the form

εẋ = −(1− x)x− x− (1− x)y(4.1)

ẏ = k2x(4.2)

with ε¿ 1.
From asymptotic analysis it is known that the solution of (4.1) may contain a

small initial layer due to the singular nature of the equation as ε → 0, see, e.g., [2].
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Fig. 3.5. Free substrate and bound enzyme S + C (upper left), free substrate S (upper right)
and bound enzyme C (down) for test c) of Table 3.1: numerical solution of equations (2.2), (2.3)
(solid line), analytical solution of the linearized model (boxes).

A general method to obtain an asymptotic solution in the initial layer is to perform
a scaling in time such that equation (4.1) becomes a regular perturbed problem.
Together with an asymptotic expansion in the outer region one may define a matched
asymptotic expansion as long as the problems induced by an asymptotic expansion
are integrable in closed form.

Let us first derive an asymptotic expansion for the initial layer: introducing the
time scaling τ = t/ε yields

x′ = −(1− x)x− x− (1− x)y(4.3)

y′ = εk2x(4.4)

where now both x and y are functions of τ and ′ denotes the derivative with respect
to τ . Substituting the asymptotic expansions

x = x0 + εx1 + . . . , y = y0 + εy1 + . . .
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Fig. 3.6. Free substrate and bound enzyme S + C (upper left), free substrate S (upper right)
and bound enzyme C (down) for test d) of Table 3.1: numerical solution of equations (2.2), (2.3)
(solid line), analytical solution of the linearized model (boxes).

into equations (4.3), (4.4) yields the zeroth order equations

x′0 = −(1− x0)x0 − x0 − (1− x0)y0(4.5)

y′0 = 0(4.6)

which are closed by the initial conditions x0(0) = 0 and y0(0) = −1.
From (4.6) and the initial condition we conclude y0(τ) = −1 and substituting this
solution into (4.5) yields the Riccati equation

x′0 = −x0 + (1− x0)
2(4.7)

It is straightforward to notice that equation (4.7) is the scaled form of the Riccati
equation (2.6) of Section 2.1 and therefore the solution reads

x(τ) =
3

2
−
√
5

2

(
√
5 + 3)e

√
5τ − (

√
5− 3)

(
√
5 + 3)e

√
5τ + (

√
5− 3)

(4.8)
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The next step is to compute an outer expansion, but unfortunately the zeroth order
equations do not give analytical formulas: putting ε = 0 in (4.1) yields the differential
equation

ẏ0 = k2x0(4.9)

together with the algebraic equation

x2
0 + (y0 − 2)x0 − y0 = 0(4.10)

where x0 and y0 are now again function of t. Substituting the relevant root of (4.10)
into (4.9) yields the differential equation

ẏ0 = −k2

(

1−
y0

2
−
√

4 + y2
0

2

)

which turns out to be not integrable in closed form.
An approximation for the outer expansion is obtained by neglecting the quadratic
term in (4.10). This yields the differential equation

ẏ0 = k2
y0

y0 − 2

and the (implicit) solution reads

y0(t) = −2W
(

C exp

(

−
k2

2
t

))

(4.11)

where W again denotes the Lambert W function, see Section 1.
One should notice that the differential equation for the outer solution should be
solved without any initial condition and therefore the constant C in (4.11) denotes
an integration constant. The idea of inner and outer solutions is to fix the constant
afterward by a matching procedure of the inner and outer solutions, see [2].

The solution y0(t) in (4.11) is still not given in closed form and one may further
simplify the expression using the asymptotic behavior W (x) ∼ x for x ¿ 1. Then,
the solution y0(t) becomes

y0(t) = C exp

(

−
k2

2
t

)

(4.12)

and the corresponding expression for xo(t) reads

x0(t) =

exp

(

−
k2

2
t

)

exp

(

−
k2

2
t

)

− C

(4.13)

The constants in (4.12) and (4.13) may be fixed using van Dyke’s matching rule [2]
and this yields the following outer solutions

x0(t) =

(
√
5− 3) exp

(

−
k2

2
t

)

(
√
5− 3) exp

(

−
k2

2
t

)

− (
√
5− 1)

(4.14)

y0(t) = − exp

(

−
k2

2
t

)

(4.15)
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Moreover, using the inner solution (4.8) and y0(τ) = −1 as well as the outer solutions
(4.14) and (4.15) gives the following composite zeroth approximations

X0(t) =
(
√
5− 3)e−k2t/2

(
√
5− 3)e−k2t/2 − (

√
5− 1)

+
(5− 3

√
5)

(
√
5 + 3)e

√
5t/ε + (

√
5− 3)

(4.16)

Y0(t) = −e−k2t/2(4.17)

Fig. 4.1 shows a comparison between the numerical solution of equations (2.2), (2.3)
(solid line), the linearized model of Section 2.2 (boxes) and the composite zeroth order
approximation given by (4.16) and (4.17). One can notice that the bound enzyme
C is much better approximated by the composite asymptotic expansion compared to
the linear model. On the other hand the improvement for the free substrate S is only
marginally. The reason for this is that the linear solution y(t) given in Section 2.1
and the composite approximation Y0(t) given by (4.17) are nearly identical. Here the
influence of the crude approximation of the Lambert W function becomes significant.
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Fig. 4.1. Free substrate S (left) and bound enzyme C (right) for test c) of Table 3.1: numerical
solution of equations (2.2), (2.3) (solid line), analytical solution of the linearized model (boxes),
matched asymptotic expansion (4.16), (4.17) with ε = 0.01 (circles).

5. Conclusion. The Michaelis–Menten equations are an important model in
biochemistry and the basic example for various quasi–steady state approximations.
In the present work we try to find analytical formulas in terms of elementary functions,
which approximate solutions of the model on various time scales. It was shown that
the (fast) transient behavior in the initial layers of the free substrate and the bound
enzyme can be sufficiently accurate described by the solution of a Riccati equation,
which integrable in closed form. This equation was even derived using an asymptotic
expansion technique.

A linearization around the unique equilibrium point of the Michaelis–Menten
equations yields formulas with work markedly well at high enzyme concentrations.
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An improved solution formula in the case when the free enzyme and substrate are
of the same order of magnitude was obtained from matched asymptotic expansions.
In summary, compared to the various QSSA methods, which are even not always
explicitly solvable, the linear model (and the corrected formula based on matched
asymptotic expansions) works sufficiently good in all parameter cases considered here.
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